
Page 1

TABLE OF CONTENTS

Course Objectives

TotalView Basic Info

Overview

Key Features

Supported Platforms

Environment Setup

Totalview Licenses

Documentation

Starup Files

Exercise #1

Starting TotalView

TotalView's Basic
Look & Feel

Root Window

Process Window

Variable Window

Mouse Buttons

Menus

Accelerator Keys

Scrolling & Resizing

TotalView's Basic
Functions

Viewing Source/Assembler
Code

Setting A Breakpoint

Controlling Execution

Exercise #2

Diving Into Objects

Viewing and Modifying
Variables

Saving Window Contents

Getting Help

Exiting TotalView

Exercise #3

Using TotalView at LANL

Course Objectives

This is a course designed to teach users how to get started using the TotalView debugging
system. It is assumed that students are familiar with the LANL ASCI computing environment.
The course will cover those systems at LANL on which TotalView is supported (see below).

This presentation is based on presentations by Blaise Barney (LLNL), Laurie McGavran (LANL),
and Etnus.

Basic Information About TotalView

What is TotalView?

TotalView is the debugging tool of choice on all ASCI systems at LANL (and LLNL).

On some systems other debuggers such as dbx, gdb, and ladebug are available. These may
have the advantage of simplicity but for multiprocess debugging TotalView has no peers.

TotalView is part of a suite of software development tools from Etnus, Inc. for debugging,
analyzing, and tuning program performance.

History:

Originally developed by BBN for their parallel computers.

Cray bought a source license, did independent development.

BBN sold its rights to Dolphin ICS, which begat Etnus, which has been continuing
development.

Etnus version also available for Sun, Digital, IBM...

Many improvements due to ASC(I)

Key Features of TotalView

Source- and assembler-level symbolic debugger for C, C++, Fortran, serial-, threaded-, and
MPI-based codes.

C++ Templates, inlined functions and code in header files;

Fortran90 user-defined datatypes, modules, deferred shape arrays, and pointers;

Mixed C/C++, Fortran.

Can be used to debug a specified program, an unattached running process, or a core file.

On a per process/thread basis, permits you to view:

Page 2

Program Scope

Additional Root
Window Functions

Loading A New Program

Attaching/Detaching
Processes

Using A Core File

Additional Process
Window Functions

Expression Evaluation

Other Action Points

Evaluation Points

Watch Points

Working with Action Points

Setting Command Line Args

Source Code Paths

Redirecting In/Out/Err

Catching Signals

Fortran90 Modules

Exercise #4

Parallel Computing

Debugging MPI Codes

Attaching MPI Processes

Selecting MPI Processes

MPI Action Points

Process Barrier Points

MPI Variable Display

MPI Message Queues

Exercise #5

Debugging OpenMP
Codes

Debugging Hybrid
Codes

Misc. Tools

Memory Debugging

Memory Usage

Call Tree

Visualizing Arrays

TotalView CLI

Exercise #6
Course Evaluation

Source code, assembler code, or both

The execution stack trace (procedure calling stack)

Stack variables and registers

Program data (variables, arrays)

MPI message queues

Provides for the insertion and execution of "code fragments" and allows you to easily modify
program data (addresses, arrays, array slices, variables) while debugging.

Provides graphical visualization of array data during debugging session

Supported Platforms Platforms at LANL

Platforms on Which TotalView is Supported at
LANL

Platform Operating System

ASCI QA, QB, CA/CB/CC, CX Tru64 Unix

QSC Tru64 Unix

ASCI BlueMountain *(until 11/04) sgi Irix

Lambda RH Linux

Theta *(until 11/04) sgi Irix

ASC Lightning RedHat Linux + BProc

ASC Flash RedHat Linux + BProc

Pink RedHat Linux + BProc

Mauve SGI Linux

TLC RedHat Linux + BProc

Grendels RedHat Linux + BProc

Coyote (1Q06) RedHat Linux + BProcIV

Other systems that might be of interest on which it is supported include ASCI White, ASCI
Purple, ASCI Red Storm, and BG/L.

If you have questions regarding TotalView contact the ICN Consultants, by phone
(505-665-4444, option 3) or by e-mail at consult@lanl.gov.

Setting Up Your Environment for TotalView

On all LANL systems on which TotalView is supported you need to use the module utility and
load a TotalView modulefile. There are usually several TotalView versions available on each
system.

Unless you've been using TotalView and have some specific issues, the modulefile you want
to load is generally totalview_default.

 You Need To Load a ModuleFile To Use TotalView at LANL

ca12 % totalview a.out.single
totalview: Command not found.
ca12 % module load totalview_default

Don't forget to compile using a compiler flag that produces symbol table information in the
object file. Typically, this is "-g." Like other debuggers, TotalView will allow you to debug
executables not compiled with the "-g" option; however, only the assembler code can be
viewed.

Page 3

Be careful which optimization level you use when you compile. Compiler optimizations can
reorganize code sequences in your program which can make it difficult to debug.

Because the TotalView GUI is an X Windows application, your environment must be set up to
do X Windows, usually with ssh tunneling. Generally, this means you need to use the -X
option to ssh. This will set the DISPLAY environment variable for you. You can check your
environment variable on the machine you're going to run TotalView on. It should contain
something like:

qsc90% printenv DISPLAY

DISPLAY=qscfe1:47.0

The X Windows environment may cause several error/warning messages about fonts that you
might not want to see. To avoid seeing them you can start TotalView with something like
totalview ... >& /dev/null . Of course, use with care!!

Note: On all LANL systems you need to llogin before you can run TotalView. On Q (Tru64)
systems this means you run it from a "back end." On BProc systems it means you run it from
a master node.

Special instructions for running TotalView on Pink and TLC are here.

TotalView Licenses

For a given platform or set of platforms, the TotalView license sets a maximum number of of
processes that a user can debug and the number of simultaneous users of that license.

The licenses float, and are issued on a first come - first served basis with no other priorities
as to LSF queue or user project.

For example, For the Linux x86 architecture, we have licenses in the secure for:
1 user to debug up to 512 processes,
1 user to debug up to 256 processes,
4 users to debug up to 64 processes, and
32 users to debug up to 8 processes.

If you see a license-related error message when you try to start TotalView it probably arrises
from one of two conditions: either the number of licenses has been exceeded or the machine
from which the licenses are served is (temporarily) down.

TotalView Documentation

Available in the open partition from Etnus at http://www.etnus.com/Documentation/. (A
variety of on-line and downloadable documents.) Some are Java-based and can take a long
time to load.

Also available on the LANL public web page http://public.lanl.gov/totalview. (Mostly PDF
documents.)

Also available in PDF format on all LANL systems supporting TotalView.

The exact path differs from machine to machine. After you load the TotalView modulefile (see
above), type "which totalview".

The result will be something like /usr/local/packages/toolworks/totalview.version/bin
or /opt/Totalview/toolworks/totalview.version/bin.

There is always a /doc directory containing the Reference Guide, User Guide, New Features
Guide, and other manuals.

In the secure partition, this is your only option.

TotalView Startup Files

TotalView grabs startup information from two files: tvdrc resides in a .totalview

Page 4

subdirectory in your home space. There is also a system-wide file in <installation
directory>/toolworks/<totalview-version>/<arch>/lib

You can use the system-wide one as a template to create your own and you can also peruse
the system-wide one to see how we (LANL) change the default behavior in any particular
version.

In this file you can have initial settings for debugger state variables, you can define your own
commands, you can have TotalView run things upon startup, and you can define command
macros.

Exercise #1

 1. Log in to the workshop machine.

Use ssh and then type llogin to log in to the back end. A single processor is all you need
now, so use llogin without any command line options.

 2. Explore the TotalView modulefile situation. Type module avail and look for the TotalView
modulefiles.

 3. Load a TotalView modulefile. Suggested one is totalview_default. Type module load
totalview_default or substitute a different modulefile if you wish. Determine which version
of TotalView the default version points to.

 4. Find the online documentation. Do this only if you are working on the secure network. Type
which totalview and from the result of that, navigate to TotalView's doc directory. See
what's there. On some systems you can view these documents with "acroread document.pdf"
but on other systems you need to copy them back to your local workstation to see them.

Don't forget that on the open network you can see all the TotalView documentation here and
here.

 5. Test X Windows. From the workshop machine start an X client such as "xterm" or "xclock"
or "xeyes." If this works kill the client. If it doesn't you need to change your settings.
Remember that you should NOT be setting the DISPLAY environment variable explicitly in a
worker machine "dot" file. Make sure that you have "X Tunneling" enabled in your workstation
ssh client.

This ends the first exercise.

Starting TotalView

TotalView can be started in a number of different ways, depending upon what you want to do
and which machine you're running on. See the following table for single-process debugging
examples.

The totalview command also has many options (over 80) that may be used to control the
GUI's behavior and appearance. Some are listed here. See the Reference Guide for more info.

Page 5

Starting TotalView for Single-Process Debugging

User Command Comment

totalview You can then load a program or attach to
an already-running process.

totalview a.out Most common usage.

totalview a.out core Loads the program specified by a.out and
its core file specified by corefile. This is
how to debug a job that crashed.

totalview a.out -a {args} Starts the debugger and passes all
subsequent arguments (specified by args)
to the program specified by filename. The
-a option must appear after all other
TotalView options on the command line.

totalview -remote $NODES a.out How to debug a serial code on a
BProc/Linux system
(Lightning/Flash/Pink). For MPI jobs on
BProc/Linux systems see the previous
entry.

Nowadays, TotalView will let you know if it can't find the specific executable you requested it
to. This could happen, e.g., if your a.out is in a directory that doesn't exist on a BProc slave
node.

TotalView's Basic Look & Feel: Of Windows, Pages, and Panes

All output to stdout and stderr will come to the window in which you started TotalView. Make
sure this window isn't hidden by the TotalView windows in case your code bombs because it's
missing an input file or something like that.

If you started TotalView on a specific a.out, you should be presented with a view consisting of
two windows. It is possible that you will see only one, because the larger can sometimes
completely obscure the smaller. If that is the case, to see the one that is hidden, type (at the
same time in the TotalView window) control-shift-r.

Now let's looks at the various kinds of windows that TotalView presents.

The Root Window and its Pages

The smaller of the two main windows is called the "root window." If you started TotalView
without a specific a.out the root window is all you'll see.

Page 6

The root window lists

- the code name,
- process ID (IF the code has been started),
- status (if the code has been started),
- and list of threads (if any) for each process you are debugging.

If threads are present, their thread ID, status and current routine of execution are also
shown.

Within the root window you can view four "pages" ("Attached," "Unattached," "Groups," and
"Log"). The Attached page is the default. It displays a list of all the processes and threads
being debugged. As your program creates processes and threads, TotalView adds them to this
list.

Note: The TotalView GUIs tend to change slightly from one version to the next. For example,

the collapse/expand icons used to look like . A hint of what is to come in future versions
is here. This is from TotalView running on a Macintosh.

Unattached Page - shows the list of processes (if any) that you own but are not currently
debugging. These processes can be "attached to" for debugging. Discussed later.

Groups Page - Lists the process/thread groups associated with your program. Some
discussion later.

Log Page - Displays a log of TotalView debug information. Brief example here.

Process and Thread State Codes

TotalView uses colored, single character State Codes to describe process and thread state
information. These codes are displayed in the Process Window's Threads Pane, and in the
Root Window's Attached and Unattached pages.

Page 7

State Code Description

B Stopped at a breakpoint. Breakpoints are numbered in the order
that you set them.

E Stopped because of an error

H In a Hold state

I Idle

K Executing within the kernel

M Mixed - some threads in a process are running and some not

R Running

S Sleeping

T Stopped

W At a watchpoint

Z Process in "zombie" state (child process that has terminated and
waiting on parent process to cleanup)

The Process Window and its Panes

The other window you see upon startup - the much larger one - is the Process Window.

The Process Window is divided into 5 distinct panes: Stack trace pane, Source pane, Thread
list pane, Stack frame pane (which shows local variables for the current function), and
Evaluation point or action points pane. Now let's dissect these panes, one by one.

The Stack trace pane shows the call stack of routines the current executable is running.
Select a line to choose a different stack, i.e., a different routine in your code. The source and

Page 8

local variables will update automatically.

The Stack Frame pane displays local variables, registers, and function parameters.

The Source pane displays source/assembler for the currently selected program or function.
Shows program counter, line numbers and any associated action points. Only "boxed" line
numbers are eligible for debugging.

New in TV 6.6.0-2 is that if you pause your mouse pointer over a variable, it will display the
value of the variable. This works best for scalars; it seems to give the first value in an array.

Page 9

The Evaluation Points or Action Points pane lists all breakpoints, barrier points, evaluation
points and watchpoints for the process.

One of the important characteristics of this pane is that it shows information from all
files/routines in which action points are set. If you select an evaluation point source line in
the Action Points frame the other panes show info related to that line.

Finally, the Thread List pane, which shows all threads that exists within a given process.
More about threads later.

The Variable Window

The Variable Window and its associated sub windows are displayed only on demand. Below
an example Variable Window for an F90 array in TotalView v6.4. Note that an array has an
actual type as well as a declaration type.

The Variable Window is composed of a header area and a data pane. Values in the data
pane are automatically updated when the process stops.

You'll be using the Variable Window not only to display data but also to change data and to
change the way you view data.

Page 10

Here's what the "Details" Window looks like:

You can Dive on Fortran COMMON blocks to bring up a data window showing their contents:

For structures, you get the name, data type, and values of each field. Below is an example of
a Fortran90 derived data type.

Page 11

Two other TotalView windows include the

MPI message window and an Event Log Window, which displays log of debugger events.

Mouse Usage

Much of your interaction with the TotalView debugger is through the use of a three-button
mouse. Note: mouse functions have changed in recent versions of TotalView.

TotalView Mouse Usage

Mouse
Button

Purpose Description

LEFT Select /
Dive

Single click on an object to select it and/or to perform its
action.

Double click to dive into an object.

MIDDLE Paste /
dive

Pastes info previously copied or cut into the clipboard at the
cursor's position. Not supported in all windows. Diving result is
same as with left button; only one click required.

RIGHT Context
menu

Pops-up a menu of common commands related to the object
clicked on. Supported in most windows and panes, but not
dialog boxes.

Menus

Two Types of Menus:

Pull-down menus

Appear at the top of most windows

Activated by clicking with the left mouse button

Some menu selections may have submenus

Page 12

Pop-up menus

Activated by clicking on an object (such as a variable, line number, etc.) with the
right mouse button

Not all objects possess pop-up menus

Menus are context sensitive - different windows will have different menus. Different versions
of TotalView may display different menus.

Dimmed menu selections are either irrelevant or not available.

Root Window Menus:

Process Window Menus:

Page 13

Variable Window Menus:

Page 14

Pop-up Menu Examples:

Accelerator Keys

In addition to selecting actions from menus, you can also use TotalView's predefined
accelerator keys to initiate most of the debugger's common functions.

The action associated with an accelerator key depends upon which TotalView window (Root,
Process, etc.) has focus / is raised.

You can always find out which accelerator key(s) to use by viewing the menu for the action -
accelerator keys are shown on the right side of the menu.

The table below shows some of the more common accelerator keys and their actions.
Examples are above.

Page 15

Accelerator Keys

Key Window Action

F1 Both Pops open context-sensitive help window

CNTRL-a Process Pops open command-line arguments window

CNTRL-b Process Pops open action points window

CNTRL-d Process Opens search path window. Used for finding
source code which is separated from its object
code.

CNTRL-e Process Opens expression window

CNTRL-f Process Opens window for finding a function/routine

f Both Opens window for finding a string

g Process Go process - initiates/resumes process
execution

G Process Go group - initiates/resumes execution for
process group

h Process Halt process

H Process Halt all processes in group

i Process Go to next instruction

n Process Go to next source line

s Process Step to next source line

CNTRL-N Both Opens new program window

o Process Return out of function

p Process Set program counter to selected line in source
window

CNTRL-Q Both Exit TotalView

r Process Run to selected line in source window

v Process Opens window for specifying a variable to view

x Process Step to next instruction

CTRL-SHIFT-R Process Raise Root Window

Scrolling and Resizing

Conventional Scrolling Behavior:

Conventional scrollbars are used by most of TotalView's windows, pages and panes.

Scrolling is accomplished by clicking and/or dragging with with either the left or middle
mouse buttons.

If you have a mouse with a scroll wheel it should work, too.

The usual up-arrow, down-arrow, page up and page down keys might also work.

Resizing Windows and Panes:

All windows can be resized in the usual Xwindows fashion by dragging window borders with
the mouse to a new size/position.

The Process Window panes can be also be resized by clicking and dragging on any resize
widget.

You can control the size of the TotalView window(s) upon startup by:

 1. Go to the Preferences menu, which exists identically in both the Root and Process
Windows.

Page 16

 2. Set the preference "Force Window Positions" (which is in the Options tab);

 3. Then use (again, in either Root or Process Window) Window -> Memorize or Window ->
Memorize All to remember your window geometries.
Thanks, of course, to Lauren P. McGavran for pointing this out!

TotalView's Basic Functions

Viewing Source and Assembler Code

TotalView will initially show your main program in the process window. To look at source in a
different file use the f accelerator key:

Page 17

To search for a string within the source use the CONTROL-f accelerator key combo and type
in the string file you're looking for:

In the Process Window's Source Frame you can display source code, assembler code or both
of them interleaved together and when you change your location in one, the other updates
automatically. Here's an example:

To select these views use the View menu in the Process window:

Page 18

Setting A Breakpoint

An Action Point is something you specify for TotalView to perform when a thread or process
reaches a source line or machine instruction in your program.

TotalView has four different types of action points:

Breakpoint

Process barrier point

Evaluation point

Data watchpoint

A breakpoint is the most basic kind of action points. It causes a process or a group of
processes to halt execution at a specified point.

For regular source, only "boxed" line numbers are eligible for breakpoints.

The easiest way to set/unset a breakpoint is to simply click on a source code line number

with the left mouse button. A red STOP icon will then appear on the source line
number and an entry will appear in the Action Points pane of the Process window.

Note the difference between "Run to" a line and "Go" until a breakpoint. If you don't need to
stop execution every time execution reaches a specific line, you can tell TotalView to run
your program to a selected line or machine instruction.

Other ways to set a breakpoint include:

Right mouse click anywhere on the desired source line until a pop-up menu appears.
Then select Set Breakpoint.

Left mouse click anywhere on the desired source line and then use the Action Point
menu in the Process window. Then select Set Breakpoint.

Use the CNTRL-B accelerator key sequence to set a breakpoint at any arbitrary
location.

Page 19

TotalView also displays breakpoint information in the Process Window's status bars and in the
Root Window state code column. See the figure below.

After you've set a breakpoint you can either delete or disable it.

To delete a breakpoint,

Left click on the red STOP icon at the source line number in the source pane, or

Right click on it and hold and select "Delete" from the pop-up menu, or

Page 20

Right click on the stop icon in the Action Points pane and hold and select "delete" from
the pop-up menu.

Disabling a breakpoint means that you have TotalView keeps its definition but ignore its
function while your program is executing.

To disable a breakpoint,

RIGHT click on the red STOP icon at the source line number in the source pane and
select "Disable" from the pop-up menu, or

LEFT click on the red STOP icon at the Action Points pane.

When you disable the breaktpoint the red icon becomes "greyed out."

We'll cover conditional breaktpoints later.

Controlling Execution

The basic execution control commands provided by TotalView include those in the following
table. Note that these pertain to the Source Window.

TotalView
Command

Description
Accelerator

Key

Go Start/resume execution G or g

Halt Stop execution H or h

Hold/Release Stopping / Resuming execution. (covered later) w (is toggle)

Step Run to next source line or instruction. If the next
line/instruction calls a function, the function will
be "stepped into". Execution will stop within the
function.

S or s

Next Run to next source line or instruction. If the next
line/instruction calls a function, the entire
function will be executed and control will return
to the next source line or instruction (the
function is "stepped over").

N or n

Run Allows you to arbitrarily click on any source line
and then run to that point.

R or r

Return Execute to the return OUT of a function. Returns
to the instruction after the one which called the
function.

O or o

Make sure you understand the difference between "Step" and "Next," and between "Go" and
Run."

Exercise #2

 1. Copy the Exercise files.

Where possible, the instructor has used the give utility to give you a tar file containing some
sample codes. Use the following commands to copy this file (it is called
"TView-samples.tar") to a place where you want to work (either your home directory or a
scratch space).

mkdir TViewClass (make a new directory for the class)

Page 21

(change to that directory)

cp /givedir/your_moniker/TView-samples.tar . (copy the class exercises)

tar xvf *.tar (extract everything from the archive).

 2. List the contents of your TotalView subdirectory. The file list was not available at press
time :)

 3. Look for a file called "sweep-single.exe.machine_name," where "machine_name" is the name
of the machine you are working on. If you do not see this file contact the instructor.

 4. Note: You may need to load a compiler modulefile (Intel) to run this code.

 5. Start the TotalView debugger with a sweep-single.exe.machine_name executable.

If everything is set up and working correctly, including your Xwindows environment, you
should then see TotalView's Root and Process windows appear, loaded with your
sweep-single.exe program.

 6. Familiarize yourself with TotalView's windows.

Obviously, there isn't much you can do just yet, but at least make sure you see both the
Root Window, the Process Window.

Make sure you can locate the five panes in the Process Window.

You might try a few of the various menus for both windows.

 7. Run the code to completion. Use any of the following 3 methods to do this.

Accelerator key: Type g in the Process Window

Go Button: Selected from the Process Window's execution control button panel.

Process or Group Menus: Select Go from either of these pull down menus in the Process Window.

Note that since no breakpoints were set, the program simply runs to completion.

Find the program's output. It is displayed in the window where you started TotalView. The last
two lines show the runtime. Note the runtime. Sample output is available here.

 8. Set a breakpoint

In the Process Window's Source Pane, left-click on the box for line 127 to set a breakpoint

prior to entering the subroutine "read_input." A red STOP icon icon will appear. Notice
that an entry also appears in the Action Points Pane, indicating that the breakpoint has been
set (shown below).

Page 22

Note that this is just one of several ways to set a breakpoint - it is probably the easiest and
quickest however.

 9. Run the program again.
Use either "g" or choose the "Go" button. When the program hits the breakpoint and stops,
look for evidence in 3 places: notice the Program Counter (yellow arrow) on line 43, the B
breakpoint status code displayed in the Threads Pane (shown below), and also note that the B
breakpoint status code appears in the Root Window, too.

10. Next vs. Step

 1. You should now be stopped at line 127. (Verify it.) Your next task is to get the program
to stop at the call to subroutine "decomp" at line 134. You could set a breakpoint to do
this but it's the very next source line so instead, use the "Next" command to "step over"
the call to "read_input." The best way to do it is with the Accelerator key: Type n in the
Process Window.

 2. Now that you're stopped on the call to subroutine "decomp," use the "Step" command to
"step into" decomp. Do it either with the s accelerator key or by pressing the Step
button in the process window.

 3. When you do this the yellow program counter icon will be at line 17, which is the first
executable statement in subroutine "decomp." Make sure this is the case.

 4. Now go to the Stack Trace Pane in the Process Window and click on "driver." This will
put you back in "driver" and you will see the yellow program counter icon at line 134,
which is where you "stepped." You can go back and forth between "driver" and
"decomp" by clicking in the Stack Trace Pane. Try it.

 5. Do you understand the difference between "Step" and "Next?"? Do you understand how
to move around in the call stack using Stack Trace Frame?

Page 23

This ends the second exercise. Do NOT quit from the debugging session.

Diving

Diving is something you can do almost everywhere in TotalView to view more detail about an
object (such as an array variable or a function). What happens when you dive depends on
where you are and what you're diving on.

Here's how to dive:

Double left click on an object.

Right click on an object and then select "Dive" from the resulting pop-up menu (if
applicable)

Select "Dive" from any window's View menu (if applicable). There's no accelerator key
for diving.

Middle-mouse-click on an object.

Objects which you can dive into are described in the table below.

Page 24

Object Window What Is Displayed

Process / thread Root A new Process Window appears for the selected
process / thread.

Routine Process (in stack
trace frame)

Stack frame and source code for selected routine
appears in the Process Window

Subroutine Process (in
source code

frame)

Source code appears in the Process Window

Pointer Process Referenced memory area appears in a new Data
Object Window

Variable, array,
address

Process Variable contents appear in a new Data Object
Window

Array/Structure
element

Variable Contents of element appear in the Data Object
Window. Example of a "nested" dive.

Source code line
number tag

Process Context menu related to Action Points (when
diving via Mouse right-click).

Here's an example of diving to dereference a pointer

Page 25

An error condition results from diving on a variable that is not
yet on the stack. This is a common occurance when examining
routines that have not yet executed.

Some dives create new windows and some use existing windows to display their data. Dives
that use existing windows are called nested dives because the new information replaces the
previous information.

The figure above shows a single variable window with a nested dive operation. A further dive
on "tv_sec" or "tv_usec" would reveal their values.

This might be a good time to talk about preferences for viewing variables.

Viewing Data

Viewing Variables

Variables on the stack are listed in the Stack Frame Pane of the Process Window.

You can use the variable lookup command, from the "View" menu in the Process
Window.

Viewing Variable Lists

Page 26

This is a very nice, new feature available only in the latest versions of TotalView (e.g.,
6.4 and above). It allows you to view the values of several (scalar) variables at one
time in one window as your code executes.

Three ways to do it:

 1. In the Process Window's Tools menu choose the Expression List option and add
the variables you want.

 2. Right-click on a line in the Process Window Source or Stack Frame Panes. From
the displayed context menu, select Add to Expression List .

 3. You can do the same as #2 in a Variable Window.

You want to use this feature in conjunction with breakpoints. TotalView will update the
values in this window each time the program halts.

Viewing Registers

Register contents are listed in the Stack Frame Pane after stack variables.

Viewing Arrays

For array data, TotalView provides several additional features:

Array slices

Data filtering

Data Sorting

Array statistics

Viewing Array Slices

Display array slices by editing the Slice: field in an array's data window. A slice has the
form lower_bound:upper_bound[:stride] where stride allows you to skip elements
and is optional. You supply this info for each dimension. If you enter a single value
TotalView will expand it to the lower_bound:upper_bound form.

Page 27

You can see an example of a slice of a 4-d array here. Note that if you open a data
window, examine the contents, then execute further with the data window open, and
then halt again, the values will be updated in place.

In the following 5 images you can see how a slice is set.

Viewing Arrays With Filters

Arrays containing data types of character, integer or floating point can be filtered to
display only desired data using the Filter: field in the Variable Window.

Filtering can be:

 1. By arithmetic comparison
 2. For IEEE values
 3. By a range of values
 4. Within an expression

Examples:

Fortran Filter: .gt. 250
Filter: .eq. $nan
Filter: 7:512

C/C++ Filter: >= 100
Filter: != $inf
Filter: 128:<1024

Page 28

Array Data Sorting

Old Method: In the Variable window select "Sort" from the "View" menu and then
choose either ascending or descending.

The Variable Window will be updated with the array elements sorted as specified. Note:
Sorting takes place internal to TotalView and not actually within your data.

New Method: In the Variable window simply click on the word "Value" in the heading for
the Value column in the data pane. Clicking once sorts ascending, clicking again sorts
descending, and a third time "unsorts."

Array Data Statistics

In the Variable window select "Statistics" from the "Tools" menu.

A window containing statistical information about your array will appear - example
below. It may take some time to compute.

Page 29

Modifying Data

You can edit variables from within the Variable Window. Simply click on the variable with the
Select (left) mouse button. This will select the variable for field editing.

The Variable Window below demonstrates editing an array element. Notice that the array
element being edited is enclosed in a box with the field editor cursor.

The variable's new value takes effect when the program resumes execution.

Changing Variable Data Types:

TotalView will display variables according to their declaration type in your program. In most
cases, the TotalView types are identical to their programming language counterparts;
however, C language pointers to arrays are an exception.

You change the data type in the Variable Window. Left mouse click on the data type field and
then edit as desired.

Note: it is necessary to do this when you want to examine the contents of a dynamically
allocated array in C. For example, suppose you have a declaration such as

double **u, **v;

Page 30

and you later allocate as:

/* First allocate pointers to rows. */
 u = (double **) malloc(nx * sizeof(double*));

 /* Then allocate rows and set pointers to them. */
 u[0] = (double *) malloc((nx * ny) * sizeof(double));

When you want to examine the contents of u, you have to give TotalView some hints about
the size of the dimensions by casting the variable's data type after you dive on it. The
sequence of 4 screenshots below shows this. The last is obtained by diving on the string
"double" in the data window (not in the type field).

Page 31

Saving Window Contents

Most TotalView windows, pages and panes enable you to save their contents as ASCII text.
You can also pipe the contents to UNIX shell commands.

Needless to say, make sure your mouse pointer is in the window or pane of interest. Then
select Save Pane from any window's File pull-down menu. A dialog box will then appear for
your input, as shown below:

Options:

Filename: enter desired file name
Write to File to create a new file or overwrite an existing file
Append to File to add the contents at the end of an existing file
Send to Pipe to pipe the contents to a UNIX shell command. The pipe command is entered in the
Filename box. For example:

| grep 'c(i,k)' > my.out

You can save program state from the Stack pane, for example, and you can also save
intermediate array contents from a variable's Data window. Very useful.

Getting Help

Nearly all TotalView windows provide an extensive, context-sensitive "help" facility.

Nowadays, this brings up a separate browser window - whichever browser is running on the
cluster that you're using.

Page 32

Exiting TotalView

Page 33

You can exit the debugger in several ways:

From any window select File Menu > Exit

Type CTRL-q or CTRL-Q in any window

Close the Root Window via your Xwindows window manager

Type CTRL-c in the window from which you started TotalView.

Unfortunately (in this reporter's opinion) after selecting any of the first 3 ways to exit
TotalView, you will be prompted to confirm your choice to exit.

Exercise #3

 1. Dive on a routine.

 1. The idea here is to use the debugging session exactly as you left it from the previous
exercise, where you were moving about the stack using the entries in the Stack Trace
Frame.

Now we try another way to get into subroutine "decomp." Go back to subroutine
"driver" (if you're not there already). Then double-click on the word "decomp" on line
134 - NOT the line number but on the source line, itself. This is how you DIVE in
TotalView.

 2. Now go back to subroutine DRIVER again by clicking on it in the Stack Trace Pane. Now
try the other way of Diving: single-click on line 134 with the RIGHT mouse button and
then select "Dive."

Note the result is the same as #1.

Remember, with TotalView you can "dive" on most anything, just by double-clicking on
it.

 2. Undive out of subroutine "decomp."

 1. Find the undive button located in the upper right corner of the Source Code Pane (shown
below) and click it. Now you're back in "driver."

Page 34

 3. Dive on an array variable

 1. Get the program to stop at line 650. This is in subroutine "inner." You're left on your
own to do this. You could set a breakpoint but you could also try "running to" it, just for
something different.

 2. Dive on the variable "mu" or "eta" a few lines up. To do this double click on the
variable's name. This will cause a new Variable Window to open, displaying the contents
of the array (shown below).

 3. Note that in general, if you keep the Variable Window open and then resume execution
in the Process Window the Variable Window will automatically update values (if they've
changed) the next time execution halts.

 4. Display an array slice.

 1. Dive on the variable "Sigs." It's right next to "mu." Answer the following questions:

 1. What rank is "Sigs" (how many dimensions does it have)? Determine this using
TotalView's Variable Window for "Sigs."

 2. What are its real dimensions?

 2. In the Variable Window for array "Sigs," find the line near the top which says: Slice:

 3. Double-click in the array dimension brackets area. These will look like (:,:,:,:).
(Note that for C they would look like [:][:][:][:]).

 4. This will invoke the line editor, allowing you to type in a range of array elements,
called a "slice" as shown below.

 5. Try typing in a slice. Try (1:1, 1:1, 1:2,:) . After you type in the slice, hit return.

Page 35

 6. When you hit return, the array slice you specified will appear in the Variable Window.
Four locations should be displayed. Now try (1:,1:1,1:2,:). Scroll through the window
contents to see the results.

 5. Modify a variable value

 1. While you've got the Variable Window open for "Sigs" left-mouse click on any element's
value field to invoke the line editor. This will let you modify the value (shown below).

 2. Hit return for the modification to take effect.

 3. If you want to confirm that the modification took effect, close the Variable Window.
Then, dive on array c again to open a new Variable Window. Find the array element you
modified and verify that it was changed.

 6. Get Help

Your job: find out how to load a new program. We haven't covered this yet. You should go
through this even if you do know how to load a new program:

 1. Go to the Root Window and click on Help -> Help. This used to bring up a nice,
stand-alone, context-sensitive help program but now it loads a browser.

 2. Click on the "contents" button in the upper left.

 3. Expand the entry "The Root Window" by clicking on the expand icon then expand the
entry "File Menu Commands." You'll find the answer in there.

 7. Quit TotalView

 1. Use any of the following methods to quit the debugger:

Accelerator key: Type CTRL-Q in the Root Window

Menu: Select Exit from the Root Window's File Menu

Other-1: Close the X-Window containing the Root Window

Other-2: Type CNTRL-C in the window where you started TotalView

 2. BUT: We're not done yet! One more thing...

 8. Program Scope

 1. Restart the debugger on sweep-single.exe. Scroll to line 127 in the source. This should
be call to subroutine "read_input."

 2. Dive into subroutine "read_input." Do this by double-clicking on "read_input".

Dive (double-click) on a few variables, such as "npe_j" at line 1006 or "dx" at line 1009.
Try some others, too. What happens? Why?

Page 36

This ends the third exercise.

Program Scope

Scope is the region in your program in which a variable or a function exists or is defined. This
region begins with its declaration and extends to the end of the current block.

When symbol lookup is performed for a particular symbol name and it isn't found in the
current scope, the symbol is said to be out-of-scope. An error message results, such as the
ones you may have observed in the last exercise. Examples:

Note that errors of this type can also happen if your code wasn't compiled for debugging.

Dynamic variables that are "live" at any point in time are shown in the Stack Frame.
Additionally, you can locate a symbol after execution has begun using the "Lookup Function"
and/or "Lookup Variable" entries in the Root Window's "View" menu. The variable search will
find only global variables or those defined within the current scope. Accelerator Key is v.

Until you start executing a program there are no live variables. You can easily see this in the
Stack Trace Pane, the Stack Fame Pane, and the Threads Pane of the Process Window.

The fully-qualified scope for a variable is shown in the Variable Window; some X-Windows
systems might show it in the title bar, too:

Tip: After moving around to different places in your source code you can return the
currently-executing line of code using the "Reset" option in the Process Window's View
menu. Accelerator is "Cntrl-R."

Page 37

Additional Root Window Functions

Loading a New Program

You might want to do this if:

You did not specify an executable when you started TotalView

You want to load a new executable at any time during your debugging session

You want to reload the same executable after recompiling

TotalView has the ability to automatically reload your source after you change it and
recompile; however, this might not happen immediately.

To load a new executable use the "New Program" option (CNTRL-N) which appears in the File
menu of both the Root and Process Windows.

Attaching / Detaching Processes

TotalView can be used to debug programs or processes that are already running. This can be
particularly useful for diagnosing "hung" programs.

The best way to do this is as follows:

 1. Go to the Root Window and select the Unattached Page.

 2. The Unattached Page (below) will appear showing a list of processes. Local processes
appear at the top of the page - all other processes are running on remote machines.
Grayed-out processes are not eligible for attaching.

 3. Dive on the process you wish to attach. When you do, it will appear in the Process
Window where you can debug the process as usual. A good thing to do immediately is
Halt execution. Remember that the arrow symbol will show you where the
program was executing.

Using A Core File

If a job has already crashed you can use TotalView to examine the state of the program when
it crashed. The program counter should point to the statement where the program crashed.

Page 38

However: if you attempt to execute (go) a crashed program within the debugger, the core
file will be abandoned and the debugger will start a new process with the executable. The
result will most likely be another crash and the production of another core file.

Of course, error trapping can be imprecise - TotalView will use whatever traceback was
produced but this should be regarded as only an approximation of the program's state.

Also, don't forget where core files are produced, especially on Tru64 systems.

There are two methods for debugging core files.

 1. Start TotalView from the command line, supplying the executable name and the corefile
name:

totalview executable corefile

 2. Start TotalView any way you choose and then open the core file as though it were a
New Program.

 3. By the way, there may be special procedures necessary to generate a core file. For
example, on BProc systems using the Intel ifort compiler the environment variable
decfort_dump_flag must be set prior to running.

Additional Process Window Functions

Expression Evaluation and Code Fragments

TotalView enables you to enter "code fragments" during a debugging session. Code fragments
can include a mixture of:

C, Fortran or Assembler language code (Note: assembler support is architecture
dependent).

TotalView built-in variables ($tid, $pid, $systid ...)

TotalView built-in statements ($stop, $hold, $stopall ...)

TotalView Intrinsic Variables and Built-In Statements are listed here.

Code fragments interact with your program, and are evaluated within their runtime context.
They can therefore be used for a variety of purposes, such as:

Setting conditional breakpoints

Program patching - branching around code and/or adding new code

Effecting conditional execution

Displaying program data

Modifying program data

Code fragments can be entered by two methods, each serving a different purpose:

Evaluate Window

Evaluation Point (covered later)

There are restrictions and limitations for code fragments (such as not being able to use
COMMON blocks in Fortran). See the TotalView Users Guide for details.

Make sure that a process has run to a meaningful point, particularly if you intend to use
variables that are part of your program.

Open an Evaluate Window (shown below) as follows:

Page 39

In the Evaluate Window, select the language of choice (C, Fortran, Assembler) by clicking
on the appropriate radio button

Enter your code fragment in the Expression box.

Click on the Evaluate button. The expression will be evaluated and its value will appear in
the Result box. Note that the value that appears relates to the last expression in the code
fragment.

Other Kinds of Action Points

We already discussed breakpoints. Other kinds of action points include:

Process Barrier Point - This is discussed later.

Evaluation Point - causes a code fragment to execute when it is reached. Enables you
to set "conditional breakpoints" and perform conditional execution.

Watchpoint - enables you to monitor a location in memory and either stop execution
or evaluate an expression when the value stored in memory is modified.

Setting an Evaluation Point

 1. First, make sure that the program is halted.

Page 40

 2. Open the Action Point Properties Dialog Box by either going to the Action Point Menu or right
clicking on the source line and selecting Properties from the resulting pop-up menu.

 3. In the Action Point Properties Dialog Box, do the following:

 1. Select the Evaluate button.

 2. Select the button for the correct language.

 3. Enter your code fragment in the expression box - an example is shown below.
(Expressions were covered previously under Expression Evaluation).

 4. Click on the OK button when finished.

 4. The source line should now display an EVAL icon and an entry will appear in the Action
Points pane.

 5. At runtime, the entered expression will be evaluated when it is encountered by a process or
thread. Evaluation Point expressions are evaluated before the source code line.

Action Pane Usage Review: Diving (double-clicking) on an entry will make that source line
appear in the source pane. If you want to see what conditions are set for a given action (such
as an EVAL) select that entry (single-click) and choose Properties.

Another nice use of this feature: You can stop execution within a loop after 100 iterations by
using the expression $count 100.

Setting a Watchpoint

You can monitor changes to specific memory locations using a Watchpoint.

Watchpoints are most often used to find a statement in your program that is writing to a
"stray" or unintended memory location.

Watchpoints are triggered only when data in memory is modified. If a write occurs to a
memory location but the value of the data is the same, the Watchpoint is not triggered.

Page 41

To set a watchpoint:

 1. Dive on a variable to open a Variable Window.

 2. Select Watchpoint from the Tools Menu.
Note: If watchpoints are not supported on your platform, this item will be "grayed out"
and unable to be selected.

 3. A Watchpoint Properties Dialog Box will appear. You can make the watchpoint a
Conditional one. Enter and select the relevant information and click the OK button
when finished. An example appears above.

Unlike other action points, watchpoints do not display an icon on a source line, because they
are associated with an address location, not a source line number. Their presence is shown in
the Action Points Pane however:

It is essential to consult the TotalView Users Guide before attempting to use watchpoints.
There are numerous platform issues and important details not mentioned here.

Working With Action Points: Deleting

Naturally, there are several ways to delete action points.

 1. Right click on the source code line and then select Delete from the resulting pop-up
menu.

Page 42

 2. Select the line and choose Delete from the Action Point Menu in the Process Window.

 3. Single click on the icon in the source pane. Deleting a disabled action point in
this way requires two clicks.

You can delete all action points at once by choosing Delete All from the Action Point Menu in
the Process Window. No accelerator key for this.

Working With Action Points: Disabling / Enabling

Disabling an action point means that it is made "inactive" without deleting it. Enabling a
previously disabled action point means that it is made active again.

Naturally, there are several ways to disable / enable action points.

 1. Right click on the source code line and then select Disable or Enable from the resulting
pop-up menu.

 2. Select the line and choose Disable or Enable from the Action Point Menu in the Process
Window.

 3. Left click on the desired action point icon in the Process Window's Action Points Pane.

 4. You can disable/enable all action points at once by choosing Suppress All from the
Action Point Menu in the Process Window. CNTRL-SHIFT-D is the accelerator key for
this. You can toggle between disabling (suppress) and enabling all action points.

 5. When an action point is disabled, it will appear as a dimmed (gray) icon in both the
Action Points Pane and in the source code line, as shown below.

Working With Action Points: Saving / Loading

You can have TotalView save all of your action points (except Watchpoints) to a plain text
file. The option for this is in the Action Point Menu from the Process Window.

The filename for the action points file follows the format:

executable_name.TVD.breakpoints

You can also load previously saved action points into your current debugger session; the
option is in the same place. Remember to check preferences, too.

Setting Command Line Arguments

By default, TotalView does not pass arguments to a program being debugged. If your
program requires command line arguments, they must be passed by one of two methods.

 1. Use the -a flag on the UNIX shell command line when you start the debugger with the
totalview command. This must be the last argument in the command string. For
example:

totalview a.out -a arg1 arg2 arg3

 2. Choose Startup Parameters from the Process Menu in the Process Window.
Accelerator is CNTRL-A. When the Startup Parameters Dialog Box appears (below),
make sure that the Arguments page is selected. Enter the arguments to be passed to
your program when it starts separated with spaces or put each on a new line. For single
arguments with embedded spaces, enclose the entire argument with double quotes.

Setting Source Code Search Paths

In cases where your source code and executables are not co-located, you may need to tell
TotalView where to search for the various components.

By default, the debugger will search the following directories (in order):

 1. Current working directory

Page 43

 2. Path of an executable started with a full path name

 3. Directories specified in your PATH environment variable.

How to Add Additional Search Paths:

 1. Choose Search Path from the File Menu in either the Root Window or the Process
Window. Accelerator key sequence is CNTRL-D in both.

 2. In the Search Path Dialog Box enter the directories that should be searched, in order.
They can be separated with a space or a new line. Relative path names are permitted
(relative to the current working directory).

 3. You can browse for directories to add by clickng on the Insert button to open a Select
Directory Dialog Box.

Setting stdin, stdout, and stderr

By default, TotalView reads stdin from, and writes stdout/stderr to the shell window where
you started the debugger.

To change the defaults choose the Startup Parameters... option from the Process Menu in
the Process Window (CNTRL-A). Then select the Standard I/O Page and enter your
information.

Page 44

Catching Signals

You need to worry about this only if your program includes its own signal handling routines.

In that case you may want to change TotalView's default behavior with signals. To do this
choose the Signals... option from the File menu on the Process Window and set the options
you'd like. Note that this may be a platform dependent process.

Signal handling modes choices are:

Error - stops process, places it in an error state, and displays an error in the title bar
of the process window.

Stop - stops process and places it in the stopped state. Equivalent to SIGSTOP.

Resend - debugger will send signal to the process. This mode should be used for all
signals handled by your own signal handler routine.

Ignore - discards the signal and restarts the process without a signal. Should not be
used for fatal signals, as it may cause the debugger to get caught in a signal/resignal
loop.

Fortran90 Modules

You can view a list of all known Fortran90 modules in your program using the "Fortran
Modules" entry in the Process Window's Tools menu.

Page 45

This may be a lot easier than searching for a variable associated with a module because
TotalView sometimes gets confused trying to locate F90 variables. The modules window looks
like this:

This window is just like a variable window in that you can dive on any entry to display the
actual module data.

Page 46

Exercise #4

 1. Attach to a hung process.

 1. Compile the example program. Here, you have your choice of C or Fortran versions.

C: cc -g spinhung.c -o spinhung

Fortran: f90 -g spinhung.f -o spinhung

 2. Start the program by typing spinhung &

and then start TotalView by typing totalview &

When the Root Window appears, click on the Unattached page/tab (shown below). Find
the spinhung process and double left-click (dive) on it. A new Process Window will
appear, loaded with the spinhung process.

Page 47

 3. Remember to switch back to the "Attached" pane in the root window. Notice that your
program is now there.

 4. Before you do the next step look at both TotalView windows. Make sure you see
evidence in both that the program is running.

 5. Halt execution of the hung program using either the Accelerator Key (h), the "Halt"
button in the Process Window, or select "Halt in the Process Window's Process or Group
Menus. Notice the difference in the 2 windows from the previous step.

 6. Examine the source code and determine the problem. The reason why this trivial
program is hung is rather obvious. Try diving on the variable i.

 7. Change the value of the variable i so as to "fix" the "bug" in this program. Remember:
You do this by diving on the variable, left-clicking on the variable in the Variable
Window to invoke the field editor, typing in the value that you want, and hitting return
so the modification will take effect.

 8. Resume (Go) execution of the hung process. It should now complete execution.

 9. Make sure you don't leave any background spinhung processes running or suspended!

 2. Debug a crashed program

 1. Compile the Exercise 2 example code. You can use either C or Fortran.

C: cc -g -check_bounds tvEx2.c -o ex2

Fortran: f90 -g tvEx2.f -o ex2

 2. Run the code and notice that it will bomb and dump core. There are two ways to debug
this program: with or without the core file.

 3. Try the core file method first. If you don't remember how to find core files on Tru64
systems then look here for a reminder. Make sure you don't have an environment
variable set that prevents core file creation.

 4. Run TotalView on your executable with the core file: totalview ex2 core. The
debugger comes up in some low-level routine caused by the abort, so click on tvex2 in
the Stack Trace Pane.

 5. What line was executing when the abort happened?

 6. Unfortunately, the exception trapping is imprecise - the core file wasn't generated
exactly when the error occured. There was a delay where execution continued. You can
try to figure out why the code bombed by looking at the line where the program counter
is. Dive on some variables there. In the next steps you'll find a recipe for one way to
help locate the bug. You should do these steps even if you have found the bug.

 7. Quit and restart the debugger without the core file. Look at the two nested loops at line
40. The bug happens when "i" is 6 and when "j" is a large number.

Page 48

 8. Set a conditional breakpoint to stop at line 41 when I is greater than 5. Execute the
code. When the breakpoint is triggered the program counter will be in a TotalView
function to implement the evaluation point. To get this function off the stack use the
"Out" command (in the Process Window Process Menu (or "o" accelerator key).

 9. Delete the breakpoint you just set.

10. Now set a conditional breakpoint to stop at line 42 when "j" is 98. GO the program.
Then use the "out" command as above when it is triggered and then delete this
breakpoint. Then look in the Stack Frame to make sure that "i" equals 6 and "j" equals
98.

11. Dive on the variable "trials." Does it look basically okay? Use NEXT a few times,
keeping the "trials" variable window visible and keeping track of "j" in the Stack Frame.
What happens?

12. Quit and relaunch the debugger. This time, set an evaluation point to stop at line 41 if
"j" is greater than 99. GO and then OUT when the breakpoint is triggered. Now open the
Properties box for the evaluation point and change the code so that if "j" is greater than
99 go to line 47. Execute. You have just "patched" the code so that it can run to
completion.

This ends the fourth exercise.

Parallel Computing Review

Two main machine models: "Shared Memory" (left) and Distributed Memory (right). P =
processor; $ = cache; NI = network interface.

Three main methods: Shared Address Space, Message Passing, and Hybrid

Shared Address Space

Program is a collection of threads of control. Threads are typically created dynamically,
mid-execution, by a master task (fork-join). Often (although not always) parallelism is
loop-based.

Each thread has a set of private variables, e.g., local stack variables; Also a set of shared
variables, e.g., static variables, shared common blocks, or global heap.

Threads "communicate" implicitly by writing and reading shared variables. Synchronizing is
explicit in the program and uses shared variables.

Typically done with pthread library or OpenMP library. Only the latter will be considered in
this tutorial but the action of TotalView for both is essentially the same.

Maps well to the "Shared-Memory" architecture on the left, above.

Common bugs: timing errors accessing shared variables, improperly identifying variables as
shared or private, improper parallel region scope. Timing errors are generally referred to as

Page 49

"race" conditions.

Distributed Memory

Program consists of a collection of separate processes, usually fixed at program startup
time, with separate address spaces and NO shared data.

Processes communicate by explicit send/receive pairs and synchronization is implicit in every
communication event.

MPI is the most common example.

Maps well to both architectures.

Common bugs: Sending too much or too little data; sending at or receiving at the wrong
address; sending or receiving at the wrong time if asynchronous messages are used.

Hybrid

We're not going to draw it. The machine model is the distributed memory machine model
shown above/right but with each processor-cache-memory node replaced by the Shared
Memory machine model shown above/left.

The hybrid programming model is a combination of the two programming models described
above, generally with a single MPI master task and several children threads per. Again,
threads can be accessed either through OpenMP or through a pthreads library.

Debugging Parallel Codes With TotalView

Debugging parallel programs is notoriously difficult. Parallel programs are subject not only to
the usual kinds of bugs but also to new kinds having to do with timing and synchronization
errors. Often, the program "hangs;" for example, when a process is waiting for a message to
arrive that is never sent or is sent with the wrong tag. Parallel bugs can be non-deterministic
- they can disappear when you use a debugger or add code to try to identify the bug.
TotalView, however, can definitely help; in fact, it can be quite a powerful tool for parallel
codes.

It goes without saying that the most important part of parallel debugging is to ensure that
your code is fully debugged as a sequential process!

Note that when your parallel program runs there will often be one or more system threads
spawned, which TotalView will see, but which you should ignore.

Page 50

TotalView and MPI

The features described in this section have been tested using Alaska MPI on the Q systems
(module load MPI_default), LA-MPI (also known as OpenMPI) on the BProc systems, and to
a lesser extent, HP MPICH on the Q systems (module load MPI_64bit_R6).

Typically, MPI programs run under a "manager" process, usually prun or mpirun at LANL.
Because of this, you must start TotalView with the manager process, NOT the name of your
MPI executable.

TotalView will automatically acquire all parallel processes at start-up. It can also attach to an
already running parallel program and acquire all of its processes.

Starting TotalView With MPI

OS Command

Irix totalview pam -a -auto_place -mpi -np # a.out

Tru64 totalview prun -a a.out

Lambda Linux
LAMPI

totalview -a mpirun a.out [args to a.out]

BProc Linux totalview mpirun -a -np 16 a.out

Sun totalview mprun -a -np 16 a.out

MPICH mpirun -np 16 -tv myprog

Mauve Linux totalview mpirun -a -np 16 a.out

After you issue one of the above commands, the debugging process is still different than for a
single-process executable. Here's what happens:

 1. The Root Window and Process Window will appear as usual; however, it will be the MPI
manager process that will be loaded, not your program. So you'll see either source or
assembler for "prun."

 2. Start running by typing g in the Process Window. Or hit the "Go" button.

 3. A dialog window will then appear notifying you that a parallel job is about to begin. It
will ask you whether or not you wish to stop the job now. You click "Yes" if you want to
set a breakpoint, in which case a Process Window will open and you are now ready to
begin debugging your program. If you click "No" the process window will also appear
but the job will begin running. You can always "Halt" it.

Page 51

Here's what the Root Window looks like for a 4-process MPI job that was halted prior to
execution. Each MPI task is a separate process.

And here's what the Root Window looks like after execution has begun:

Page 52

Attaching MPI Processes

TotalView can attach to a running MPI program, which is particularly useful if you suspect that
your code has deadlocked. To do this start TotalView with no arguments, and then select the
"Unattached" page in the Root Window.

Then you dive on the prun or mpirun process that started the job (See Figure). This attaches
all of the associated processes (and the "manager" process). When the processes attach they
will halt. (This is different from attaching to single-process jobs, which attach in the "Run"
state.)

Page 53

By the way, after you attach, don't forget to select the "Attached" page in the Root Window.
The Root Window will appear as in the figure below.

Selecting and Identifying Processes in MPI Debugging

One of the most important aspects of debugging MPI codes with TotalView is the ability to
direct your commands either to individual processes or to all processes. Here's how to select
an individual process (two ways):

 1. Dive on a process listed in the Root Window. That process's information will then be
displayed in the current Process Window.

Note that the default behavior is for TotalView to use a single Process Window
regardless of the number of processes. If you want a separate Process Window for each
MPI process then select Dive in a New Window. Do this by Right-clicking on the
process in the Root Window or by selecting that option from the Root Window's View
menu. Here are views of both ways:

 2. Use the process navigation control buttons (shown below) located in the upper right

Page 54

corner of the Process Window to cycle through all processes until the desired task's
information fills the Process Window.

The dashed red oval in the figure above shows the Process Navigation Control Buttons.
Using these buttons you can cycle through all the processes, one at a time. Don't forget that
at least one process will be the MPI manager process.

The solid ovals in the figure show the various places in the Process Window where TotalView
displays information distinguishing one MPI process from another. The next figure shows how
TotalView paints each task's window differently, which is useful in case you suddenly and
unexpectedly forget the meaning of the Arabic numerals. The patterns carry across to all
windows for that process, too.

Page 55

TotalView organizes processes and threads into Process/Thread (P/T) Groups so you can
operate on all your processes at once if you want to. There are separate Process and Group
menus in the Process Window.

Group: Execution commands apply to all MPI processes.
Process: Applies to a single MPI process.

Some examples are here.

For the most part, the difference in the command accelerator keys is lower case for
processes and upper case for groups.

 A new execution control for processes and threads is the hold command. When a
process is held, it is unresponsive to commands that would cause it to run, such as Go,
Step, Next, etc.. Held processes will display an H state code in the Root Window
(below): You hold a process with the w key. You can't hold the group.

Action Points in MPI Debugging

When you set a breakpoint in an MPI code you need to decide how it will affect your

Page 56

processes:

 1. Will all processes halt when any one process reaches the breakpont or just the one that
reached it?

 2. Should the breakpoint itself be set in all processes or just one? In TotalView
terminology, this is basically asking where to plant the breakpoint.

You set these behaviors via the Action Point Properties Dialog Box. To open this window,
first select a source line with a breakpoint or barrier point. Then either:

Dive (right-mouse) click on the source code line and then select Properties from the
resulting pop-up menu or

Select Properties from the Process Window's Action Points menu.

An example of the dialog box in which you set these behaviors is below. You can see that this
can be done for both breakpoints and barriers, although we're not quite sure why you'd want
to do it for barriers.

Be careful when you single-step on a process basis through MPI codes. It's possible to
hang on a source statement that can't complete because it depends on (via
communications) a process that is stopped.

Setting a Process Barrier Point

Process Barrier Point - holds each process when it reaches the barrier point until all
processes in the group have reached the barrier point. Here's how to do it:

Single click to select an executable source line and then select Set Barrier from the Action
Point menu in the Process Window.

Single click to select an executable source line and then select Properties from the Action
Point menu in the Process Window and select Barrier.

Right click on the source line and select Set Barrier from the resulting pop-up menu.

Shift-click on the line number of an executable source line. The line number will change to

. Of course, the barrier will also show up in the Action Points pane.

Page 57

Displaying a Variable in All Processes

You can display a variable's value in all threads or processes through what TotalView calls
laminating. To laminate, first dive on a variable to bring up the Variable Window. Then
select Laminate from the View menu and choose "Process."

The result looks like this:

It gets pretty difficult to read but you can do this for arrays (and structures). An image is
here.

You can edit laminated variables - either collectively (same value applies to all instances) or
individually.

MPI Message Queue Debugging

Note: This does not work using Alaska MPI on "Eagle" Tru64 systems and it does not work
using LA-MPI. It is possible that it will work when OpenMPI is released.

TotalView allows you to examine the run-time state of your MPI program's message passing.
This might be helpful when debugging deadlocked programs. You can also use the information
to "play back" what happened during execution.

To view the message queue state for a selected MPI process, first stop execution, then
choose Message Queue from the Tools Menu in the process window. Make sure you
understand that each process will have its own message queue.

An example from a run that completed is shown below. Types of messages displayed include

Page 58

pending sends and receives - non-blocking and blocking - and Unexpected messages -
messages sent to a process that do not yet have a matching receive operation, and
completed messages.

Here's an example where there is a pending message. Interestingly, you can actually Dive on
the user buffer (even though only a pointer to it appears) and see what data the process is
waiting for.

Page 59

You can also get a graph of the message queue (Process Window -> Tools Menu -> Message
Queue Graph). Some examples are below, although we're not 100% certain how useful this
feature is.

Page 60

Note: LAMPI does not support the message queue debugger interface, and it is not in the plans to
add it. Let us know if this is an issue.

Exercise #5

 1. Login With Multiple Processors.

 1. Unless you already have a multi-processor llogin session, log out to the front end and
issue the command llogin -n 4 .

 2. Compile the MPIexamp code:

C:

cc -g MPIexamp.c -o MPIexamp $MPI_COMPILE_FLAGS $MPI_LD_FLAGS -lmpi

Fortran:

f90 -g MPIexamp.f -o MPIexamp $MPI_COMPILE_FLAGS $MPI_LD_FLAGS -lfmpi

 3. Start TotalView with prun and your executable

 1. Type: totalview prun -a MPIexamp &

Page 61

 2. The prun process will appear in the Root and Process startup windows (along with some
warning messages - don't worry about them).

 3. Start execution by clicking the "Go" button in the Process Window.

 4. A dialog box (at right) will appear. Select Yes.

 5. The Process Window will now display the prun process, and a list of all 4 MPI tasks plus
the prun process should appear in the Root Window.

 4. Review the source code

 1. Cycle through all MPI tasks. Use one of the process selection methods (either the P- P+
Navigation buttons or by diving on a process from the Root Window) to display the
source code. Note where the MPI task information is displayed.

 2. The header comments explain what's happening with this program. It follows the SPMD
(Single Program Multiple Data) programming model, which means the same program is
executed by all MPI tasks. Note however, that there are sections of code that are
executed by the master task (0) only, by non-master tasks only, and by all tasks.

 5. Experiment with breakpoints.

 1. Set a breakpoint at line 53. Note that this line occurs in the master (task 0) section of
code. The other MPI tasks do not execute it.

 2. "Go" the Group. What happens when the master task hits the breakpoint? Cycle through
the other MPI tasks to see what they're doing and where they're at in the source code.
Look at the status of all tasks in the Root Window. You will see some stdout output -
find the source code for the print statements.

 3. Now, delete the breakpoint on line 53. (Question: How do you do this if your Process
Window is not showing the task in which the breakpoint is defined???)
Set a new breakpoint at line 73, which is still in the master only section of code.
However this time set the breakpoint so that only the master task will stop: Right-click
(and hold) on the line number box until the pop-up menu appears and then select
Properties. When the Action Point Properties Dialog Box appears you will see the
current properties for this breakpoint. Override this behavior to stop only the process.

 4. "Go" the Group again. What happens this time when task 0 hits the breakpoint? Check
status again in the Root Window. Cycle through the tasks again in the Process Window.
Figure out where (in the source) the other tasks are.

 5. Let the program finish running. Then quit the debugger.

 6. Compile the mpihang code:

C:

cc -g mpihang.c -o mpihang $MPI_COMPILE_FLAGS $MPI_LD_FLAGS -lmpi

Fortran:

f90 -g mpihang.f -o mpihang $MPI_COMPILE_FLAGS $MPI_LD_FLAGS -lfmpi

 7. Attach to (and debug) the MPI Processes

 1. Execute the mpihang code you just compiled by typing

mpi_job_starter mpihang &

where mpi_job_starter is system dependent. Could be prun (Tru64) or mpirun -np 4
(BProc) or others. The code will write two lines of output to the terminal but then it will
hang indefinitely. Caution: On BProc systems you need 2 windows for this and the
background mechanism does not work.

 2. Start TotalView (by typing totalview with no options) and attach to the running
mpihang processes. Use the "Unattached" page in the Root Window. Don't forget to dive
on the "prun" management task.

Page 62

 3. A key part of this exercise is for you to explain the behavior of the four MPI tasks. Use
TotalView to determine the state of each.

 4. If you can't determine the reason for the hang and explain the behavior of the four
tasks by inspecting the code, then try quitting TotalView, killing the four mpihang
processes, and then restarting TotalView from scratch, i.e., totalview prun -a
mpihang . Then breakpoint at line 22 and "Next" through the code, source-line by
source-line, watching the control flow for each of the four tasks. Find the bug!

TotalView and OpenMP

Many of the concepts you learned in using TotalView with MPI also apply to OpenMP
programs. One change is that with OpenMP your "P/T Group" consists of threads instead of
processes.

This means that you'll use the thread navigation control buttons located in the upper
right corner of the Process Window to change threads within a single Process Window:

When you debug an OpenMP code with TotalView you'll be able to:

Debug at source level of the original OpenMP code;

View, modify, and set actions on threads individually and collectively;

Set breakpoints throughout the OpenMP code, including lines that are executed in
parallel; and

Have access to PRIVATE and SHARED variables in PARALLEL regions - for both master
and worker threads;

An OpenMP example is shown below. Notes:

 1. There are 3 program threads plus master thread plus 3 system manager threads.

 2. All 4 program threads are executing within a parallel region, a so-called "outline
routine."

 3. The thread shown in the image is a worker thread (not the master).

 4. You could display the master thread by diving on the arrow, which TotalView calls the
"Parent Frame Link."

 5. The parallel region source is shown.

Unfortunately, the central problem associated with debugging multiple, global shared address
space processes, namely the "probe effect," does not go away with TotalView; in fact, it can
get worse. This effect refers to the fact that frequently the bugs in these kinds of programs
are timing bugs and use of the debugger changes the timing when the code executes.
Sometimes the bugs can disappear with the debugger.

Page 63

Also, on the Q Tru64 systems. there is a significant difference in observed performance of
OpenMP codes when compiled with different debugging options (-g...-g3). Best parallel
performance is observed with -g3 but at this level TotalView will not let you "see" all
variables in your code.

Example: Sample red-black iteration scheme, 300x300, 73000 iterations.

Single-processor time (-fast): 21.5

4-processor time (-omp -g): 44.1

4-processor time (-omp): 7.5

4-processor time (-omp -g3): 7.5

Reminder: On Tru64 systems, llogin -n 4, then setenv OMP_NUM_THREADS 4, then
totalview a.out -a {args}.

On Tru64 systems, if you use 4 OpenMP threads, they will be labeled 1.1, 1.2, 1.3, and 1.4.
There will be additional system manager threads labeled with negative numbers (e.g., 1.-1).

Page 64

Debugging Hybrid Codes

By "Hybrid" we mean codes that combine MPI and OpenMP, generally firing off one MPI
process per node that then fires off some number of OpenMP tasks.

TotalView includes no new "features" or special functions to handle hybrid codes. There is
nothing new to learn.

Everything that applies to MPI, threads and OpenMP holds true essentially unaltered for hybrid
codes.

Remember that you'll probably have to alter your execution line, viz., env
OMP_NUM_THREADS=2 totalview prun -a -n 2 a.out.

Brief example: SPhot is a 2D photon transport code from LLNL. Every CPU that is employed in
the computation works on a local copy of the 2D mesh and MPI tasks exchange input data,
update global variables, and collect timing statistics, while OpenMP tasks transport particles.

A view after two MPI tasks have been created is shown below. The code is at a breakpoint
immediately prior to an OpenMP parallel region. Note: In order to reach this point in both MPI
tasks, one task had to be single-stepped on a process-only basis.

Page 65

The next view shows the headers for the four Process Windows after the OpenMP tasks were
spawned.

Needless to say, debugging such codes can get complicated in a hurry. If you want to get this
code and play with it, you can get it from
http://www.llnl.gov/asci/purple/benchmarks/limited/sphot/.

Page 66

Miscellaneous TotalView Tools

TotalView's Memory Debugging Tool

The Memory Debugging Tool helps you find a variety of memory error conditions, such as

Page 67

memory leaks, freeing the wrong address, realloc() problems, freeing memory that has
already been freed, and freeing unallocated space (from stack, bss, or data sections). The
usage of this tool is or course, quite system dependent. Check the Etnus documentation for
more info.

There is an extensive manual for the the memory debugging tools available on
http://public.lanl.gov/totalview/.

In the current release, TotalView's memory debugger tracks memory allocations and
deallocations but does not track memory access at the load/store level. (Other tools, such as
Purify, do this.)

The Memory Debugger Window (shown below) is in the Process Window's Tools menu.

General steps for memory debugging are listed below. Caution: you must enable the
Memory Debugger before execution begins.

 1. Bring up the Memory Debugging window;

 2. select which process(es) you want to debug in the "Process Set" pane on the left. For
single-process jobs, this will be your executable. For MPI jobs it will be prun or mpirun.

 3. Check the "Enable memory debugging" box (circled in red in the above figure, which
this figure shows as selected). (for single-process debugging) or the "prun" (or
"mpirun") command (for multi-process) is selected (highlighted in black) in the Process
Set on the left.

Everything you set in the "Configuration" tab should be inherited by the MPI tasks.

Repeat Caution: you must enable the Memory Debugger before execution begins on

Page 68

prun or mpirun.

 4. Choose whether or not to have TotalView stop execution if it detects a heap library
problem.

 5. Set a breakpoint somewhere suitable.

 6. Execute;

 7. Generate a memory debugging view for one of the memory error conditions.

 8. You can then execute more, breakpoint, and update (CNTL-U) the view.

If you try to enable memory debugging after beginning program execution, or if you try to
disable it after execution (memory debugging can be quite time consuming especially on
large numbers of processes), TotalView will display its Restart Now? Dialog Box. This
restart process may not work on some sytems.

Error Notification

If you enable memory debugging and turn on notification, TotalView stops execution if it
detects a notifiable event. For example, the following program tries to free a block that
does not correspond to the start of a block allocated using the malloc() function.

When TotalView detects the error, the Memory Error Details Window (below) appears
and execution stops at an internal TotalView breakpoint.

Page 69

Finding Memory Leaks

Assuming that you enabled memory debugging, set a breakpoint, executed, and are

Page 70

now halted, select the Leak Detection tab. Initially, you get some instructions and an
overview but continue by selecting a view and generating the view. You can drill down
to specific routines and source lines.

Heap Status

The Heap Status Page displays information about all memory blocks that your program
has not yet freed. You can order items in the list by "Bytes" to see the largest
allocations. Information on this page is the same as in the Heap Status page except that
the view contains all memory allocations, not just allocations that represent leaks. You
can choose to show allocations that TotalView thinks are leaks in red.

Page 71

Recipe for generating the above figure is as follows:

1. In the Memory Debugging window choose "Source View" and then click on the elipsis
to the right of "Source View."

2. In the dialog box that appears make sure "Allocations & Leaks" is checked, as in the
following figure.

Page 72

Memory Usage Tool

The Memory Usage Tool tells you how your program is using memory, and where this
memory is being used. Usage is broken down in terms of:

Text (Memory used to store your program's machine code instructions.)

Data (Memory used to store unitialized and initialized data.)

Heap (Memory used for data created at runtime.)

Stack (Memory used by the currently executing routine and all the routines in its
backtrace.)

Stack VM (The logical size of the Stack.)

Total VM (The sum of everyting in the process'es address space.)

Note: Memory usage used to be a separate tool in TotalView; now it is fully integrated
in the Memory Debugging Tool (see above). However, you do not need to enable
memory debugging to obtain a Memory Usage View.

Call Tree

Select the Call Tree option in the Tools Menu in the Process Window to display a
dynamic call tree while you are halted at some point during execution.

Page 73

Visualizing Array Data

TotalView's Visualizer is a stand-alone program that is integrated with TotalView. You
can visualize your program's data as you are debugging your program and you can also
save the data that would be sent to the Visualizer, and then invoke the Visualizer from
the command line.

TotalView can visualize one- and two-dimensional arrays of character, integer, or
floating-point data. If an array has more than two dimensions, you can visualize part of
it using an array slice.

To visualize an array, breakpoint, dive on the array, and then select Visualize from the
Variable Window's Tools Menu.

Supposedly, using the TotalView intrinsic $visualize, you can visualize data from
within an Evaluate Window or Evaluation Point. This supposedly causes TotalView to
update the array display every time it reaches the eval point, effectvely producing an
animation of the changing array data. I've not gotten it to work.

Page 74

TotalView CLI

The CLI is a command-line interpreter that you can use either from the shell or within the
TotalView GUI. The CLI is embedded within a Tcl interpreter, which means that you can
create "automated" Tcl debugging programs for specific tasks.

To invoke it from the shell, type totalviewcli a.out (or something similar).

To invoke it from within an existing TotalView session, choose the CLI option from the
Process Window's Tools menu (accelerator keys: Ctrl-Shift-C).

The CLI can be an extremely powerful tool. It is covered in great detail in the Reference
Guide on public.lanl.gov/totalview/. A nice command reference is here.

You can use the CLI to create your own commands or perform any kind of repetitive
operation. For example:

foreach i {1038 1043 1045} { dbreak $i }

Common CLI commands

User Command Comment

totalviewcli a.out Start the CLI on an executable

drun Launch the executable

dhalt Suspend execution

dcont Continue execution

dgo Continue execution

dwhere Produce traceback

drerun Re-launch the executable

dnext Execute one source line, stepping over any subroutine calls

dstep Execute one source line, stepping into any subroutine calls

dlist Print some number of source lines

dlist <source-loc> Print some number of source lines starting at <source-loc>

dlist -n # Print # source lines

dprint <var> Print the value of variable <var>

dprint a(1:4,1:4) Print a slice of array a

dwhat <var> Print information about the symbol <var>

dbreak <name> Breakpoint on entry to routine <name>

dbreak # Breakpoint at <source-line #>

help <cmd> Print help info about command <cmd>

dheap <options> Does everything the memory debbugger GUI does and more.

Exercise #6

 1. Visualize an Array in SWEEP3D. Start TotalView on sweep3d.single. "Go" the executable
and watch the output from the program (in the window where you started TotalView). When
you see it print "its = 1 err = 1.00000000000000 fixs = 0" then "Halt" the program. Most
likely you will be in subroutine SWEEP. Find the variable flux and visualize several slices of it.

To do this, first verify that you're stopped in subroutine sweep, then find the variable flux,
then dive on it, then select "Visualize" from the "Tools" menu in the Variable Window. Then

Page 75

you have to select a slice - choose whatever you want.

Course Evaluation

Please complete the online evaluation form at
http://trouble.lanl.gov/~hjw/eval.php in the yellow network. You can click the blue box to go there.

 LA-UR 05-3472

Public Web Site | Web Contact | Privacy Policy | Copyright Â© 1993-2004 UC
Operated by the University of California for the U.S. Department of Energy.

